Compute the relative information loss of the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the truncated normal distribution.
rlse_norm(p, alpha, beta)
rlre_norm(p, alpha, beta, delta)
rlhce_norm(p, alpha, beta, delta)
rlae_norm(p, alpha, beta, delta)
The functions rlse_norm, rlre_norm, rlhce_norm, and rlae_norm provide the relative information loss based on the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the truncated normal distribution,
The location parameter of the normal distribution (
The strictly positive scale parameter of the normal distribution (
The truncation time
The strictly positive parameter (
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Awad, A. M., & Alawneh, A. J. (1987). Application of entropy to a life-time model. IMA Journal of Mathematical Control and Information, 4(2), 143-148.
Patel, J. K., & Read, C. B. (1996). Handbook of the normal distribution (Vol. 150). CRC Press.
re_norm
p <- c(0.25, 0.50, 0.75)
rlse_norm(p, 0.2, 1)
rlre_norm(p, 0.2, 1, 0.5)
rlhce_norm(p, 0.2, 1, 0.5)
rlae_norm(p, 0.2, 1, 0.5)
Run the code above in your browser using DataLab