Free Access Week - Data Engineering + BI
Data Engineering and BI courses are free this week!
Free Access Week - Jun 2-8

shannon (version 0.2.0)

Truncated normal distribution: Relative loss for various entropy measures using the truncated normal distribution

Description

Compute the relative information loss of the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the truncated normal distribution.

Usage

rlse_norm(p, alpha, beta)
rlre_norm(p, alpha, beta, delta)
rlhce_norm(p, alpha, beta, delta)
rlae_norm(p, alpha, beta, delta)

Value

The functions rlse_norm, rlre_norm, rlhce_norm, and rlae_norm provide the relative information loss based on the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the truncated normal distribution, p and δ.

Arguments

alpha

The location parameter of the normal distribution (α(,+)).

beta

The strictly positive scale parameter of the normal distribution (β>0).

p

The truncation time (p>0).

delta

The strictly positive parameter (δ>0) and (δ1).

Author

Muhammad Imran, Christophe Chesneau and Farrukh Jamal

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.

References

Awad, A. M., & Alawneh, A. J. (1987). Application of entropy to a life-time model. IMA Journal of Mathematical Control and Information, 4(2), 143-148.

Patel, J. K., & Read, C. B. (1996). Handbook of the normal distribution (Vol. 150). CRC Press.

See Also

re_norm

Examples

Run this code
p <- c(0.25, 0.50, 0.75)
rlse_norm(p, 0.2, 1)
rlre_norm(p, 0.2, 1, 0.5)
rlhce_norm(p, 0.2, 1, 0.5)
rlae_norm(p, 0.2, 1, 0.5)

Run the code above in your browser using DataLab